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Abstract—A theory of cohesive crack model is proposed to study crack interaction. The elastic
behavior of the structure is represented by the influence functions, and the model is cast as integral
equations. When there is more than one crack, the behavior of unloading cracks must be studied.
The stability property of the cohesive crack model is characterized by its rate equations. As an
example, the theory is applied to solve the problem of a half plane with periodic cracks on its
surface. Some interesting features of the solution are described. © 1998 Elsevier Science Ltd.

1. INTRODUCTION

When a structure contains more than one crack, the question of how cracks interact must
be answered. These cracks may grow simultaneously, or some cracks may close during
certain stages of crack growth. In the framework of linear fracture mechanics, Bazant
(1977) and Nemat-Nasser et al. (1978) studied the interaction of equidistant parallel surface
cracks. In the same framework, Nguyen (1987) summarized the crack interaction problem
into a special case in the more general framework of the stability theory of dissipative
media. The problem of cohesive crack model with multiple interactive cracks has not been
studied.

The theory of cohesive crack model (CCM) to be discussed in this paper is a nonlinear
fracture mechanics theory. Although Barenblatt (1962) first attributed the crack resistance
toughness to the residual strength (cohesive stress) of the material, he restricted himself to
the case of brittle material where the process zone is very small and the cohesive stress
distribution is independent of the crack opening displacement. Dugdale (1960) and Bilby
et al. (1963) restricted themselves to the case of uniform constant cohesive stress, though
there is no restriction on process zone sizes. These are two examples of what we might call
linear cohesive crack models. Hillerborg ez al. (1976) introduced a stress-separation relation
(softening law) to describe the distribution of the cohesive stress in a finite process zone.
and therefore the cohesive crack model becomes nonlinear. Li and Liang (1993) developed
a theory of CCM in which the peak load of the Griffith problem was solved through the
condition of stability limit, which was transformed into an eigenvalue probiem under the
assumption of linear softening law. Using the same technique, Li and Hong (1992) solved
the problems of double-notched or center-notched infinite strips under remote tensile
loading.

In this paper the theory of CCM with interactive cracks is formulated. First, the
process zone equations and the crack tip equations are established as a simple generalization
from the single-crack case. These equations are called the basic equations of CCM. To
complete the formulation, one must also consider the unloading behavior of cohesive
cracks. Based on the rate form of the basic equations, the critical condition of CCM with
interactive cracks can be reduced to an eigenvalue problem. For illustrative purposes, the
problem of parallel cracks on the surface of a half plane subjected to shrinkage loading is
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Fig. 1. Schematic of two interactive cohesive cracks.

solved. it is demonstrated that the initial state of uniform growth of cracks loses its
uniqueness, and the stable uniform growth mode yields to nonuniform crack growth, where
every another crack stop growing and start to close.

2. BASIC EQUATIONS OF COHESIVE CRACK MODEL WITH TWO CRACKS

Utilizing the compliance influence functions (Green’s function), we can express the
crack opening displacements as

by

b,
wi(x;) = “J lﬁ(xl’xl')o'l(xl’)dxl’_J‘ 15(x1,X2)0,(x2) dxy + CTF (%)) P

ay a2

b

by 2
wa(x,) = —J 21(x2, X))o (X)) dxl’_J C%5(%2, X2)0,(xy) dxy + C5 (x2) P (D

ay a3

where x; (i = 1,2) are the coordinates measured along crack one and crack two, as shown
in Fig. 1. a; and b, are the initial notch coordinates and the process zone tip coordinators
for each crack. w; = crack opening displacements.

To clarify possible confusion, we want to point out that eqn (1) applies only to
situations where geometric configuration guarantees that cracks grow in their own planes.
If symmetry cannot hold for both cracks, as is implied in Fig. 1, crack surfaces slippage as
well as shear stresses, in addition to crack opening and cohesive stress, must be taken into
account. However, such considerations are precluded by the scope of this paper. The theory
of cohesive crack model with a mode I component will be pursued in a future study.

The compliance functions are denoted by C. C?°(x,) = crack opening displacement at
x, due to a unit load P, and C7/(x;, x,) = crack opening displacement at x, due to a pair of
unit forces acting on the crack surface at position x,. Due to the assumption of linear
elasticity in the bulk material, C{7(x;, x;) is symmetric with respect to i and j. P = load
parameter.

The cohesive stress is related to crack opening displacement by the softening law (Fig.
2)

w = g(0) @

When w = 0, g = f, = tensile strength of the material ; and when w = w, = crack opening
threshold value then ¢ = 0, this means the material is completely severed. Substituting (2)
into (1), we obtain the process zone equation as
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Fig. 2. Softening law with an unloading rule.
b]
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S

where i = 1, 2. The summation convention utilized in this paper observe the following rule:
the repeated subscript (dummy index), no matter how many times, in multiplication or
division implies summation over its proper range, unless specified otherwise. However, the
repeated subscript in the argument or in the integral-limit variables does not imply
summation. With this convention, the expressions can be drastically simplified. The total
stress intensity factor in each crack tip must be zero, which can be expressed as the
conditions

()

kEP— J 71(x)al<x)dx—j 72(0)0(x) dx = 0

a4 a;

bs

kip— rl k31(x)o:(x) dx—j 22(x)o2(x)dx =0 “)

a4 az

where k7 (i = 1,2) = stress intensity factor at the tip of crack i due to a unit force P, and
ki(x;) = stress intensity factor at the tip of crack i due to a pair of unit forces on the crack
surfaces at the position x,. As was pointed out by Barenblatt (1962) and Schapery (1975),
when the total stress intensity factor is zero, the crack tip stress in the material is equal to
the tensile strength of the material. Equation (4) can be simplified by using the summation
convention as

K =kfP— I " ke (), dx = 0 )

aj

Equations (3) and (5) are the basic equations of CCM with two cracks. If there are
more than two cracks, one can simply extend the range of indexes. The basic equations of
CCM as expressed by (3) and (5) can be generally written as

E’(O-j’ b]’ P) = 0 (6)

If the range of j is from 1 to n, then i = 1,2,...,2n, so there are just enough number of
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equations to solve the unknown stress distribution ¢; and crack length 5,. It is sometimes
useful to call g, = (o, b;) the state variables, for the system of structure with cracks is totally
determined once the state variables are specified. The load P is taken as a parameter. For
a given value of P, we might be able to determine the corresponding state variables, but
uniqueness and existence of the solution are not always guaranteed. There may exist only
one solution for a given value of P, or more than one solution for another value of P, or
there may be no solution at all. The major objective of this paper is to see how the solutions
respond to the changing loading parameter.

3. RATE EQUATIONS OF CCM

To study the behavior of solutions, one needs to study the rate form of the basic
equations. The rate equation can be obtained by considering the basic unknown variables
as well as the loading parameter to be the function of time 7, which is only for the purpose
of keeping the sequences of the system development. When b, changes, the compliance
functions also change. The derivatives of the compliance functions with crack length b, can
be expressed in terms of stress intensity factors

0CE(xux) 2. . dC(x) 2
abm - E/ ]\mi(xi)kmj(xj)’ (31),,, - E,

S EAL N

For these expressions no summation over m is implied. E' = E (the Young’s modulus) for
plane stress condition and £’ = E/(1 —V?) for plain strain condition, v = Poisson’s ratio.
This type of relations can be derived under the assumption of linear elasticity and was
obtained, for instance, by Okamura (1975). Equation (7) is simply a generalization to the
case of multiple cracks.

The time derivative of (3) can be expressed as

d b; .
dt G0, b;; P) =g'x)+ 4[ CF (x;, x)0,(x) dx— C7"(x)) P
. r, 8CT (x;, X) - 0CT"(x)

+b,, 0,00 dx—b, —2 = P+ B,CY(x:,b)a;(b) =0 (8)

‘

4

where a dot denotes a derivative with respect to time /. As conventional, g° denotes the
derivative of softening function g with respect to its argument ¢. The last term comes from
the derivative with respect to the upper integral limit. However, at crack tip, the compliance
function is zero, thus the last term can be dropped. The next last two terms can be simplified
by taking into account of (7) and (5)

i Jb, ACT (x;, x) . 0CT"(x;) P

b, 6;(x)dx—b, b

a4

2 . b; 2 .
~ bk [ 10,00 s kP )= — LK O)

1

Thus, eqn (8) can always be written as

b; .2 .
C(x;, x)6,(x) dx— C7P(x))P— Ek;’m-(x,-)mem = 0. (10)

;

d
dr G, =g'6.(x) +L

The time derivative of (5) can be expressed as
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In calculating the last term, we deliberately avoid expanding the derivative into the sum of
the derivative with respect to upper integral limit and the derivative of &7, with respect to
b,,, because each term will be unbounded with the order of =" (as r — 0). However, since
we expect the final result to be bounded, these singular terms must cancel each other to
yield a bounded value.

Equations (10) and (11) are the rate equations of CCM, which depend on the state
variable ¢,, but are linear in the rate of state variables and loading rate. For a given loading
rate P, one can use the rate equation to determine the rate of the state variables. If, for
every P, there is a unique solution of the state variable rate by (10) and (11), then we call
the system normal at the neighborhood of the given state. Equivalently, one may state that
when the system is normal, there is only zero solution to the rate equation if the loading
rate is zero. On the other hand, if there is more than one solution for a given loading rate,
then we say system is in a critical condition at the given state. In other words, when a
system is critical, there can be a non-zero solution to the rate equation even when the
loading rate is zero. Therefore, one can study the behavior of CCM by study the behavior
of its rate equation.

4. UNLOADING OF A COHESIVE CRACK

A cohesive crack is called in loading condition, if its crack opening displacement
increases, otherwise it is called in unloading condition. In the preceding discussion, it was
assumed that all cracks are in the loading condition. For the purpose of studying the
structural behavior such as its ioad-deflection curve, it is usually sufficient for CCM to deal
only with loading crack. This is perhaps the main reason why little is studied about the
unloading behavior of CCM. When there are more than one cracks, it is possible that some
cracks are in loading condition while the other is in unloading condition, even when the
applied load P increases.

When a cohesive crack is unloading, the cohesive stress does not follow function g to
increase when the crack opening displacement w decreases, because the material in the
process zone is partially damaged and the damage cannot be reversed by crack closure.
While the actual behavior of the unloading stress-displacement relation is, obviously, a
subject of experimental study, a simple relation is proposed as shown in Fig. 2. Upon
closing, the stress reduces linearly back to the origin. If the crack is reopened, the stress
increases along the unloading line until the softening curve g is reached, then it decreases
again following the softening curve g. This relation implies that the material can close
perfectly to its original position. In reality the fractured surfaces are rough, the crack
opening displacement may be unable to return to zero. Once may need to use more
sophisticated unloading relation to describe the crack closure. However, the precise nature
of the unloading is beyond the scope of this paper.

A loading crack implies a propagating crack. When a crack propagates, one requires
that the total stress intensity factor be zero, as is done in (4) or (5). Since the position of
the process zone tip is unknown for a propagating crack, the condition of zero stress
intensity factor can be viewed as a condition to determine the crack tip position. On the
other hand, if a crack is unloading, it no longer propagates. The process zone tip position
of an unloading crack is thus not a variable, and its correspondent crack tip equation
becomes redundant. Consequently, whenever a crack is in unloading condition, the cor-
responding component in the crack tip eqns (5) must be discarded so that the number of
equations and the number of unknowns match. The rate form of the crack tip equation
must also be modified accordingly

4k =1 - k(06,00 dx 1B ki oy O b’kﬂ() (X)dx=0 (12)
FT R ) 7 (x)6,(x) dx + m'abm’ ~Opr ab,. \X)0; X =

j a;

where a subscript with a prime denotes that the components corresponding to unloading
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cracks are excluded. For instance, suppose there are two cracks under consideration. Crack
one is loading while crack two is unloading. Then the rate form of the crack tip equation
for crack two must be discarded and the rate form of crack tip equation for crack one
becomes

5, 5,

11(x)d1 (x) dx + J' 12(x)02(x) dx

@

d .

ap

I L dr— 2 [k dx|=0. (3
W36, F ™ %, (X))o (x)dx— b, 12(x)oz(x)dx (= 0. (13)

ay ay

Furthermore, the last term in (10) is always zero regardless whether a crack is loading
or unloading, because for a loading crack we have b,, > 0 but K, = 0, whereas for an
unloading crack we have b,, = 0 although K, may not be zero. In either case, the product
b,.K,, is always zero. As a result, the rate eqn (10) can always be simplified as

b, .
g—tG; = g'di(x,-)+f CF (xi; x)6,(x) dx = C7"(x)P = 0. (14)

4

In other words, the rate form of the process zone equation is independent of 4,,. One may
take advantage of this special structure of the rate equation in studying the general behavior
of CCM. We will come back to this point later.

5. STIFFNESS FORMULATION

Sometimes, it is more convenient to work with the stiffness formulation, in which the
influence functions are stiffness functions and the crack opening displacement is the basic
unknown. The stiffness function can be defined as the inverse of the compliance function
in the following manner.

Denote by « the load-line displacement, and one can write the elastic relations in terms
of stiffness function as

oi(x) = — J S Cxi, 0w, (6) dx+ 87 (x (15)

I

5
P= —f S¥(x)dx+S“u. (16)

4

The stiffness functions and the compliance functions are connected to each other by the
following four reciprocal relations :

bm
J Siw(x, DCri(t, x;) dt + C;’P(xi)S}‘w(xj) = 0;;0(x;— x;) (17)

am

where J,, is the Kronecker-delta function and é(x —y) is the Dirac-delta function, and

bm
f SH(HCr () dr+ CPPS™ = 1 (18)

am

where CFf = load-line displacement due to a unit load P, and
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bm
J CP(x;, DSE(O)dt+ CIF8S*™ =0 (19
bm
j CLo ()82 (t, x,) de+ CPPS™ (x,) = 0. (20)

These four relations provide enough equations to determine the stiffness functions for given
compliance functions, or vice versa.
The softening law (2) can be inverted and written as

o = f(w). 21

Thus the process zone equation can be expressed as

G = flwi(x)] + F S5 (s X Iwi(x) d'x =S (x)u = 0 (22)

4

where the loading parameter is load-line displacement, which corresponds to the case that
the structure is under displacement control. If the structure is under load control, then the
second equation of (15) must be utilized together with (21) to eliminate ». Such a sub-
stitution of u with P also modifies the stiffness function. However, we will not pursue the
detail in this paper.

The crack tip equation can be written as

K = ku— J ” K (x)w;(x) dx = 0 23)

4

where k! = stress intensity factor in the tip of crack i due to a unit load-line displacement
u, and kj; = stress intensity factor in the tip of crack i due to a unit crack opening dis-
placement at x;. It is noted that most stress intensity factor formulae are given in the form
of given unit force, rather than give unit displacement. Fortunately, these two types of
stress intensity factor formulae can be related by the following equations:

bm
ki(x;) = — f St (x, X))k (x) dx + S (x )k (24)

am

and

bj
kY= — .[ SU(x)kg(x) dx+ Sk (25

aj

It is easy to verify that the derivatives of the stiffness function can be expressed in
terms of stress intensity £7(x) and k{ as follows

osSy(xnx) 2, v, OS2 ‘ N
T - - E kmi(xi)kmj(xj)s 0bm = E kmi(xi)km ("6)

which are entirely parallel to (7) apart from a negative sign. Again, there is no summation
implied over the subscript m.
With (26), the rate form of the process zone equation (22) can be written as
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Fig. 3. (a) Shrinkage stress distribution ; (b} geometry definition; (¢) a unit cell with two cracks.
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which is still independent of 4,,. The rate form of the crack tip equation is the same as (11)
except the ¢ should be replaced with w, and P should be replaced with u. If there are
unloading cracks, the rate equations should be modified accordingly. In other words, /”
should be calculated according to unloading curve, and the corresponding crack tip equa-
tions should be discarded.

6. PARALLEL CRACKS ON THE SURFACE OF A HALF PLANE

The theory described previously is applicable to a structure with any number of cracks.
In what follows we will discuss a problem with two interactive cracks. Furthermore, we
assume the softening law is a linear function in the sense that the derivative /" (or g’) is a
constant for loading cracks. Under this assumption, (27) is independent of the crack
opening displacement.

Imaging that the half plane is loaded by shrinkage strain near the surface with a
distribution shown in Fig. 3(a). Physically, such an initial strain may be caused by surface
cooling or surface drying. The crack is uniformly spaced along the surface with a distance
s which is assumed to be a parameter, see Fig. 3(b). We further assume that initial crack
length ¢, = 0 and every other crack has the same length. Thus, the problem can break down
into a unit cell of width 2s (see Fig. 3(c)) with two cracks.

The initial strain causes initial stress which is tensile. The stress distribution is rep-
resented by the function AF(x;d), where F(0,d) = 1 and F(d,d) = 0, see Fig. 3(a), where
/A = maximum stress and d = loading depth. Both 4 and 1 can be treated as loading
parameters, but only one should be left as a free variable. For a specific physical process,
both 4 and / are functions of time, and we can use time as the loading parameter. In this
paper, 4 is used as loading parameter for simplicity, although the analysis is equally
applicable to other possible selection of loading parameters.

When cracks develop, this tensile stress becomes zero on the crack surfaces. To satisfy
this boundary condition, a compressive stress of the same distribution is applied to the
crack surfaces. Such a compressive stress is the driving force to keep a crack open. The
process zone equation can be written as

b;
G; =f[w,~(xi)]+f S, xw(x)dx—Flx;;d)i =0 i=1,2 (28)
0
which is slightly different from (22) because the problem discussed here is load controlled,
and the loading stress distribution can be solved in advance.
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The crack tip equation is also slightly different, which can be expressed as
bl
K, = —f Kxywi(x)dx=0 i=1,2 (29)
0
The crack tip equation can also be expressed as

K = '[ YK d)—a, () dx = 0 i= 1,2 (30)

0

where g, is the cohesive stresses. This equation has a clearer physical meaning. It requires
that the stress intensity factors caused by the load must cancel the stress intensity factor
caused by the cohesive stress. Mathematically, these two expressions are equivalent because,
in this case, the two different types of stress intensity factors are related by the equation

ki(x;) = “j‘ ! S (x, X )k, (x) dx. (31)

0

To solve the problem numerically, we use the following procedure :

(1) Select a value of b,.

(2) For a guessed value of b,, (<b,) solve the equations G,=0 (i=1,2) and K, =0
simultaneously for w; (/ = 1, 2) and the loading parameter d, using Newton’s method.

(3) Using Newton’s method to get an updated value of b, through the equation K, = 0
based on the solution obtained in step (2), go back to (2). Repeat this loop until all the
equations are satisfied.

(4) Choose another value of b, and repeat the whole procedure.

The actual computation is based on a set of Cauchy’s singular integral equations in
which the dislocation density functions are the basic unknown together with the crack
lengths. In this formulation, the crack length can vary continuously, as contrast to the case
of finite element method or boundary element method where the crack length can only
assume values compatible with the given element mesh. A similar formulation was utilized
by Nemat-Nasser et al. (1978) to solve the problem of interactive cracks by linear elastic
fracture mechanics.

7. BEHAVIOR OF THE SOLUTION: BIFURCATION AND MAXIMUM LOAD

Although b, is treated as a parameter while b, is treated as an unknown variable in
our solution procedure, a symmetric solution, in which the two cracks are of equal length
and the two crack displacements are the same, can always be found. In other words, even
though &, is deliberately set to be less than b, the final value of b, always converges to b,.
For a given load depth 4, the loading parameter 4 vs crack length is plotted in Fig. 4 as the
top curve. The crack system is at critical condition when the applied load is at its maximum,
and the corresponding crack length is denoted as ¢,,,. It is noted that the crack mouth
opening is always less than the threshold value w, at the maximum load. As stated
previously, the homogeneous rate equations have a non-zero solution for the displacement
rate and crack length rate when b, = ¢,,,.. The homogeneous rate equations become

b]
%Gi = f'wix;)+ J SHCe, xMW(x)dx =0 (32)
0

and
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Because of the special structure of the rate equations, the homogeneous rate equations
admit non-zero solution if (32) admit non-zero solution. This is because once non-zero
displacement rate can be found from (32), non-zero crack length rate can always be found
from (33). Thus, the task of finding a non-zero solution from the homogeneous rate
equation is simplified. Furthermore, since the softening law is linear, f' = —f/w_ is a
constant. For convenience, let us introduce non-dimensional variables as follows

=300 g2l el (4
where [, = EG//f? is called the characteristic length of the material. For linear softening
law, the fracture energy G, = fw./2. The non-dimensional stiffness functions depend only
on the geometry of the problem. In the present problem, they are functions of b,/s. Since
we are discussing the critical condition of the symmetric solution, we choose & = b, = b,.
As a result, (32) can be written as

0

2b* jl S (xs, xI(x) d'x = wi(x). (35)

For given crack spacing s, finding b such that (35) has a non-zero solution is a difficult
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task. However, the problem is substantially simplified if (35) is viewed as an eigenvalue
problem for given b/s. In particular, we are interested only in the smallest eigenvalue of
2b*. Once b* is known as a function of b/s, then »* can also be expressed as a function of
s* = s/l.,. Such curves are plotted in Fig. 5. The right curve corresponds to the eigenfunction
w; = w, and the left curve corresponds to w, = —w,. The curve in the middle will be
discussed later.

The right curve corresponds to the condition that the applied load is maximized when
the crack length is equal to the given value for a given crack spacing. In fact, the maximum
load can be calculated directly using the eigenvalue solution. The process zone equation
can be recast into non-dimensional form as

bl . —
1—wi(x) +J SH(xs, xIW(x)d'x— F(x;;d)A =0 (36)
(V]
where
W, = % I= % (37)

Multiplying the eigenfunction by (36) and integrating with respect to x;, we find that the
loading parameter can be computed from the expression



992 Y.N.Liefal

,r W (x)dx
== . (38)
j Wy (X)F(x; ; d) dx;

ha NP

In deriving this equation, we have utilized the critical condition (35) and the symmetric
property of the stiffness functions, as well as the symmetric condition of the eigenfunction.
This solution is useful if one need to know the maximum load as a function of crack
spacing.

The left curve in Fig. 5 obviously is not related to the maximum load of the symmetric
solution. Since w, = —w, for the lower curve, the corresponding load level cannot be
calculated from (38). Actually, the lower curve corresponds to the bifurcation point for a
given crack spacing. The symmetric solution is the unique solution if &, is less than the
bifurcation length and both cracks are under loading condition. However, the symmetric
solution is no longer the only solution if b, is greater than the bifurcation length. When the
symmetric solution passes the bifurcation length, crack two may unload, leave only crack
one to grow in response to the loading. Consequently, the solution loses its symmetry. The
load required to propagate only one crack is usually less than that of a symmetric solution.
Although both solutions are stable, the asymmetric solution is the most likely solution that
is actually followed.

8. BEHAVIOR OF THE SOLUTION: MAXIMUM LOAD WITH ONE CRACK UNLOADING

Once crack two starts unloading, the corresponding crack tip equation is disregarded.
If the crack opening displacement at the bifurcation point is denoted as w¥, then the
unloading stress-displacement equation is defined as ¢ = f(w*)w/w*. The solution procedure
is modified because one needs not to worry about K, any more. It is also checked to see if
there is crack closure in crack two. For the range calculated, there is no crack closure found
(this of course does not exclude the possibility of crack closure when crack one is elongated
further). The load parameter as a function of the active crack length is also shown in Fig.
4 as the curve in the bottom. Compared with the curve on the top, which is the load required
if two cracks grow simultaneously, one can easily understand why one crack unloading is
more likely to happen in the real situation.

With one of the cracks unloading and the other growing, the load reaches a maximum
value, which corresponds to yet another critical condition. The critical condition can again
be characterized by the homogeneous rate eqn (32), in an expanded form, as

by )
b?‘J ?’T’(xx,X')Wl(X’)d’X+b§"[ 13 (00, X Pz (X2 (X)) d'x = Wi (x1)/2

0 0

b, b, w¥)w,
b?‘J 51 (g, Xy (x) d'x +b§J 833 (X, X Py (x)d'x = —f—_(zfvz,* wi(Xs). (39)
0 0 4

When the stability limit condition is satisfied, there exists a non-zero solution of crack
opening rate to this homogeneous equations. This equation cannot be simplified into a
linear eigenvalue problem, because there is negative sign in the right hand side of the second
equation of (39). To ensure a correct numerical solution, one need to solve the crack
opening rate of crack two in terms of the crack opening rate of crack one from the second
equation for an assumed value of 5%, then eliminate the crack opening rate of crack two in
the first equation to obtain a well-posed eigenvalue problem. Once this eigenvalue problem
is solved, the corrected value of 4% should be substituted back to the second equation, and
the whole procedure iterates until the value b% is converged. This procedure usually takes
only very few steps of iteration, typically 2 or 3 for 4-digit accuracy in b}, since the
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singularity condition is mainly determined by crack one and the influence of crack two on
crack one is not significant.

The smallest eigenvalue of the singularity condition yields yet another critical crack
length for crack one, which is the curve plotted in the middle of Fig. 5. It is interesting to
note that this curve is virtually the same as the right curve if its crack spacing #* is multiplied
by a factor of 2. The corresponding maximum load can also be obtained by multiplying
the eigenfunction to the equilibrium equations and integrating along the crack process zone

b‘l‘"r Wi (x)dx
= ‘ . . (40)
o b?‘j wl(x)F(x;d)dx+bzﬁJ W (X) F(x 5 d) dx

0

So far in this section we have assumed that crack two starts to unloading right at the
point of bifurcation. Although this is most likely the case, it does not have to be this way.
Actually, b, can be any value between c¢,,cand c,,,, the corresponding curves are also shown
in Fig. 4. In this sense, the solution is not unique once the crack lengths exceed the
bifurcation point. This is very similar to the case of the buckling of an elastoplastic column
(Bazant and Cedolin, 1991) : once the applied load exceeds the tangent modulus load, there
can be more than one solution bifurcating from the original symmetric solution. More
detailed discussion on the solution behaviors as well as the consequences of the interaction
of multiple interactive cohesive cracks in connection with static crack initiation problem
will be published in another paper.

9. DISCUSSIONS AND CONCLUSIONS

The mechanical interaction of cracks is a highly nonlinear problem. In addition to
stability limit, there is also bifurcation of crack growth patterns. Although the interaction
problem has been discussed in the framework of linear elastic fracture mechanics, it does
not seem to have been studied in the context of the nonlinear cohesive crack model.

With linear fracture mechanics, the emphasis is on the crack interaction during the
stage of crack growth. With the cohesive crack model, one can zoom in on the crack
interaction during the stage of crack initiation. In the example problem studied previously,
both bifurcation and stability limit occur before crack mouth opening exceeds its threshold
value. In other words, cracks have not started to propagate yet. These phenomena, there-
fore, cannot be properly described by using linear elastic fracture mechanics, because in
linear fracture mechanics, and in this matter, elastoplastic fracture mechanics as well, a
material can either be cracked or not cracked. To capture the gradual process of material
deterioration, the theory of cohesive crack model should be used.

In this paper, the theory cohesive crack model with multiple cracks are formulated
with compliance functions and stiffness functions, with stipulations on unloading cracks.
The rate equations of the cohesive crack model are derived. It is demonstrated that the
critical condition can be determined from the considering only the homogeneous rate
equation of the process zone equation. In this way, the task to determine the critical crack
length becomes somewhat easier. If the softening law can be assumed linear, the eigenvalue
problem is linear, and the maximum loads can be determined directly from the eigen-
function. Without the knowledge of the overall structure of the solution behavior, which
can only be obtained through a stability analysis, a blind solution of cohesive crack model
with more than one crack can be very misleading.
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